Pathology of the lungs 1

MUDr. Jan Balko, Ph.D.

Department of Pathology and Molecular Medicine,
2nd Faculty of Medicine, Charles University in Prague and
Motol University Hospital

Diseases of the lungs

- 1) maformations
- 2) inflammations
- 3) tumours
- 4) obstructive lung diseases
- 5) restrictive lung diseases
- 6) vascular lung diseases

Obstructive lung diseases

Obstructive lung diseases

- a group of diseases characterised by airflow obstruction

"Acute"

bronchial asthma

Chronic

chronic bronchitis
lung emphysema
bronchiectasis
cystic fibrosis

COPE

Definition

- asthma bronchiale*
- chronic obstructive lung disease with acute manifestations
 - long-term disease with recurring acute asthmatic episodes of symptoms
- common disease
 - cca 5 % of population, mainly **children** (increasing prevalence)
 - may be associated with COPD
- can be lethal (rarely)
 - severe / long-standing asthmatic episodes

^{*} asthma cardiale (pulmonary edema)

Causes (etiology)

- allergy triggered hyperreactivity of bronchi
 - associated with other examples of hypersensitivity (pollinosis, atopic eczema, eosinophilia, conjunctivitis...)
- multifactorial genesis (genetic + environmental factors)
 - extrinsic (precipitated by allergens, e.g. plant pollens, mites, fungi, drugs)
 - intrinsic (inner idiosyncratic response, e.g. stress, cold, infection)

- developement of type I hypersensitivity
 - Ags cross link the IgE on eosinophils and mast cells = fast release of mediators
 - these biomolecules cause airway obstruction (bronchospasm, edema) and airway mucus hypersecretion
- gradual remodeling of bronchial wall
 - acute asthmatic episodes tend to be healed ad integrum except from frequent / long standing / secondary ones (irreversible damage developes)

- macroscopically typical mucus filling bronchiolar lumen + hyperinflated lung parenchyma
 - mucus is thick and viscous with glassy appearance
 - hyperinflation makes the lungs look larger-than-normal as a result of trapped air; diaphragm is in inspiratory position
 - complications include acute cor pulmonale and bronchial erosions

- microscopically changes in brochial mucosa
 - **lumen** shows obturation with mucus plugs (Charcot–Leyden crystals / Curschmann's spirals as a result of degranulation of eosinophils)
 - epithelium shows hyperplasia of goblet cells or squamous metaplasia, thick BM
 - **stroma** is edematous and chronically inflamed with eosinophils
 - mucous glands are hyperplastic
 - smooth muscle is hyperplastic + hypertrophic

Clinical manifestations

- children and also adults
 - with allergies (younger age compared to the COPD patients)
- intermittent recurring asthmatic attacks / episodes
 - acute exacerbation of breathlessness (dyspnoea) of various severity (tachypnoea with long exspirium, anxiety, accessory respiratory muscle contraction, shortness of breath, chest tightness)
 - auscultatory phenomena (stridor, wheezing) / productive cough
 - asymptomatic intervals (except remodeling)
- complications can be rarely fatal
 - status asthmaticus (long-standing severe / repetitive attack)

COPD

Definition

- chronic obstructive pulmonary / lung / airway disease
 (COAD)
- common clinical term comprising 2 distinct lung diseases
 - chronic bronchitis + lung emphysema (co-existing in 70 % of cases)
- the most frequent disease of lower respiratory system
 - 95 % of patients are smokers
- long-term progress with fatal course
 - the 2nd most common cause of death in the Czech republic (LTx indication)

Definition

- bronchitis chronica
- productive **cough** present for at least 3 months each year for at least 2 years in a roll
 - an exception in the definition of chr. inflammation (along with chr. hepatitis)
- common disease
 - 15 % of population

Causes (etiology)

- cigarette smoke-induced irritation of the brochial mucosa
 - 95 % of patients are smokers (primary / secondary)
- in addition, inhalation of air pollution, irritating fumes or dust
 - hazardous exposures (ibdustrial / occupational = coal mining) / repeated acute brochial infections (childhood)
 - remaining 5 % of non-smokers
- multifactorial genesis (genetic + environmental factors)
 - affects 50 % of smokers (predisposition is mandatory)

- abnormal chronic inflammatory response to the inhaled smoke particles
 - develops only among the prone smokers
- later on, obstructive remodeling of bronchial wall occures
 - compared to bronchial asthma, the COPD is **steady ireversible chronic inflammation** with slow progression and **neutrophilic** participation

- macroscopically visible in late stages only
 - mucus fills the bronchi
 - bronchial mucosa can exhibit leukoplakia
- often associated with lung emphysema

- microscopically changes of brochial mucosa:
 - lumen obturated with mucus plugs
 - epithelium shows hyperplasia of goblet cells or even squamous metaplasia,
 BM is thicker
 - **stroma** is fibrotic (loss of elasticity) and chronically inflamed with neutrophils (spasm also causes frilling of the mucosa)
 - mucous glands are hyperplastic
 - **smooth muscle** is hyperplastic + hypertrophic
- Reid index as a marker of glandular hyperplasia
 - ratio between the thickness of the glands : whole lamina propria mucosae
 - the number above 0,5 confirms hyperplasia (normal index is 0,4 and less)

Clinical manifestations

- adults

- usually smokers (older compared to asthma patients, poorer economic status, prolonged course without exacerbation except from winter)
- phenotype = typically called "blue bloaters"
 - combination of productive cough (present for years, even bronchorrhoea) +
 peripheral cyanosis (dyspnoea develops into hypoxia)
 - mainly obese smokers with wide chest (usually around 40 years old)
- complications can be fatal
 - cor pulmonale chronicum, secondary lung infections

Definition

- emphysema pulmonum*, (pulmonary) emphysema,
 pneumatosis of the lungs
- abnormal persistent dilatation of alveolar tree
 - distally from respiratory bronchioli (including)
 - irreversible anatomical alteration (destruction of interalveolar septa)
- common disease
 - can be part of COPD / other forms

^{*} there are also subcutaneous and mediastinal emphysema

Causes (etiology)

- depends on the type of emphysema (2 basic mechanisms)
 - direct destruction of interalveolar septa (mainly due to the smoking)
 - hyperinflation (pathologically increased lung V at the end of expiration)
- multifactorial genesis (genetic + environmental factors)
 - develops in 50 % of smokers (only the prone ones)
 - purely inherited panacinar emphysema represents an exception

- direct destruction of interalveolar septa:
 - followed by the breakdown of the walls of the alveoli and their fusion (visible **dilatation** of air-filled cavities or spaces)

- 1) centriacinar (centrilobular) emphysema
- the most common one
- destruction of respiratory bronchioles via smoking
 - respiratory b. represents the most proximal (central) airway of alveolar tree (brings air to the group of alveoli called lung acinus; several acini = lobulus)

Developement (pathogenesis)

2) panacinar (panlobular) emphysema

- genetic disorder called α -1-antitrypsin deficiency causes destruction of the whole lung acinus / lobulus
 - α -1-antitrypsin normally blocks neutrophil elastase (it is anti-elastase)
 - destruction and dilatation of both proximal + distal part of alveolar tree

- 3) distal acinar (paraseptal) emphysema
- idiopathic destruction of alveolar wall along acinar septa
 - alveoli represent the most distal (peripheral) airway of alveolar tree (destruction is be visible mainly in subpleural and paraseptal areas)
 - may be in combination with centriacinar emphysema

- hyperinflation of alveolar tree:
 - pathologically increased lung volume at the end of expiration

- 1) irregular (localized / focal) emphysema
- para- / paracicatricial emphysema adjacent to fibrosis
 - dilatation of alveoli adjacent to areas of scarring (cicatrix)
 - caused by silicosis, granulomatous infection, pneumonia, pulmonary infarction or an operation
- hereditary emphysema caused by developmental defect
 - Down syndrome, congenital airway malformations

- 2) senile emphysema
- involutional type of lung emphysema
 - impact of aging (frequent), starvation (after loosing at least 30 % of body weight)

Developement (pathogenesis)

3) compensatory emphysema

- dilatation of **residual** lung parenchyma
 - portion of the lung increases in size, if another portion is destroyed or temporarily useless
 - after surgical resection (of lobe = lobectomy / whole lung = pulmectomy)

- macroscopically lung parenchyma gets hyperinflated
 - hyperinflation makes the lungs look larger-than-normal as a result of trapped air; diaphragm is in inspiratory position
 - barrel-shaped **chest** with horizontal ribs
 - air-filled cystic spaces known as blebs or bullae beneath visceral pleura
 - complications include chronic cor pulmonale

- distribution can reveal the specific type of emphysema:
 - centriacinar affects mainly central areas of superior lobes (lung apices)
 - panacinar is diffuse with predisposition to lower lobes
 - distal acinar affects mainly peripheral areas of superior lobes (lung apices)

- microscopically there is a loss of lung intersticium / stroma
 - loss if interalveolar sepat and fusion / dilatation of lung acini
 - reduction of total alveolar surface available for gas exchange leading to an inadequate oxygen supply for the blood

Clinical manifestations

- adults
 - centriacinar is the most common one, mainly old smokers
 - panacinar affects young non-smokers (accompanied by liver cirrhosis)
 - distal acinar young tall and skinny individuals (spontaneous PNO)
- phenotype = typically smokers called "pink puffers"
 - pink (no cyanosis) and puffy (out of breath); rarely cough (non-productive)
 - usually skinny smokers with barrel-shaped chest (age around 60 years)
- complications can be fatal
 - cor pulmonale chronicum, secondary lung infections, PNO

- bronchiectasis
- abnormal persistent dilatation of bronchial tree
 - proximally from terminal bronchioli (including)
 - ireversible anatomical alteration (destruction of bronchi(ol)ar wall)
- relatively rare nowadays

Causes (etiology)

- dilatation occures due to the **destruction** of bronchial wall
 - focall distally after obstruction (tumour, foreign body, mucus plug)
 - **diffuse** following severe inflammation (adenoviruses, measles, pertussis, TBC), in terrain of defect in host defense (immunodeficiency, CF, aspiration, neuromuscular disorders, Kartagener syndrome...)
 - majority of causes stays unrevealed (50-80 %)

- impaired drainage causes air and mucus trapping
 - air accumulation leads to further dilatation of bronchi / bronchioli
 - mucus attracts bacteria = secondary infections (further alteration)

- macroscopically visible dilatation of bronchial tree
 - cylindrical (the most common one, tubular uniform enlargement of bronchi)
 - saccular (focal outpouching of bronchial wall)
 - varicose (tortuosity caused by alternation of intermittent narrowed and dilated segments in long axis)

- microscopically dilatation of airways and mucostasis
 - epithelium shows squamous metaplasia
 - mucous glands are hyperplastic
 - peribronchial area contains chr. inflammation and fibrosis (replaces wall)

Bronchiectasis

Clinical manifestation

- children as well as adults
 - diffuse form is more typical in childhood
- productive cough resulting in dyspnoea
- complicatons can be rarely fatal
 - cor pulmonale chronicum
 - secondary lung infections (abscess pneumonia)
 - aspergilloma (pseudotumorous clump of mold in saccular bronchiectasis)
 - AA amyloidosis
 - dysplasia or SCC

Restrictive lung diseases

Restrictive lung diseases

- a group of lung diseases with interstitial fibrosis / inflammation

Acute

ARDS / IRDS

Chronic

Interstitial lung disease (ILD) / diffuse parenchymal lung disease (DPLD)

EAA

smoking associated ILD

drug induced ILD autoimmune induced ILD pneumoconiosis

secondary

IPF (UIP)

NSIP

COP

LIP

eosinophilic pneumonia pleuropulmonal fibroelastosis alveolar proteinosis

pulmonary granulomatosis

sarcoidosis

immune (vasculitis, RA) infectious

idiopathic

Definition

- Acute / Adult Respiratory Distress Syndrome
 - clinical term
 - premature newbors = IRDS (Infant Respiratory Distress Syndrome)
- acute restrictive lung disease
 - trias = rapid onset + severe hypoxemia + widespread inflammation (RTG)
 - part of acute lung injury (ALI) next to the DAH
- relatively common disease with fatal outcome
 - the most common cause of RI

- provoked by diffuse acute injury to lung interstitium
- endogenous causes
 - usually shock, rarely vasculitis, systemic autoimmune diseases...
- exogenous causes
 - inhalation (toxins, corrosives, SAVO), aspiration (drowning, gastric juice), sepsis, lung trauma (pulmonary contusion, burns), acute pancreatitis, DIC, tumours (leukaemia, lymphomas), iatrogenic (radiation, drugs)...

Developement (pathogenesis)

- universal reaction of lungs to various damage
- for those who survive, a decreased quality of life is common
 - irevesible scarred and thickened lungs (ILDs) requiring ventilation
 - the only therapeutical approach includes H-DLTx

Morphology

- macroscopically an image of "shock lung"
 - resembles **severe pulmonary edema** (transudate-soaked, over 1 kg), however the lungs **don't collapse** while trimmed (keeping their shape)

- microscopically called DAD (Diffuse Alveolar Damage)
 - pathologic term
 - exsudative phase (destruction of interstitial capillaries and flooding of lungs' aveoli with fibrin deposits = "hyaline membrane disease")
 - proliferative phase (interstitial fibrosis, hyperplasia of class II pneumocytes, carnifications (OP), bronchiolization of the alveoli from terminal bronchioli)

- children as well as adults
 - ARDS / IRDS
- destruction of parenchyma results in severe RI and pulmonary hypertension with cor pulmonale chronicum
 - good prognosis cannot be expected even after survival of the acute phase
 - prone to the secondary infections

Definition

- interstitial lung diseases (ILDs) / diffuse parenchymal lung diseases (DPLDs)
- a group of chronic restrictive lung diseases
 - characterised by **interstitial fibrosis** followed by decrease of lung volume (mutual patogenesis, clinical manifestation and imaging)
 - individual diagnoses based on histopathological image
 - sometimes lymphangioleiomyomatosis is included (but it's PEComa)
- relatively rare diseases with fatal outcome
- irreversible damage resulting in RI

- known causes
 - EAA, smoking associated ILDs, drug induced ILDs, autoimmune induced ILDS and pneumoconiosis
- idopathic (cryptogenic) causes
 - IPF (UIP), NSIP, COP, LIP, eosinophilic pneumonia, pleuropulmonal fibroelastosis, alveolar proteinosis

- EAA = extrinsic allergic alveolitis (hypersensitivity / allergic pneumonitis)
 - caused by hypersensitivity to inhaled Ags of organic dusts and molds
 - developement of type III and IV hypersensitivity (immunocomplexes + granulomas)
 - Ags may be very various:

- EAA = extrinsic allergic alveolitis (hypersensitivity / allergic pneumonitis)
 - bird droppings (bird fancier's lung)
 - moldy hay (farmer's lung)
 - cocaine (crack lung)
 - moldy bagasse (bagassosis)
 - moldy barley (malt worker's lung)
 - moldy maple bark (maple bark disease)
 - dust-contaminated grain (miller's lung)
 - mushroom compost (mushroom worker's l.)
 - compost (compost lung)
 - peat moss (peat moss worker's lung)

- moldy cork dust (suberosis)
- wood (japanese summer house HP)
- cheese casings (cheese-washer's lung)
- mist m. (metalworking fluids HP)
- mist from hot tubs ("hot tub lung")
- mollusc shell dust (mollusc shell HP)
- paints, resins (isocyanate HP)
- plastics (trimellitic anhydride HP)
- Be (beryliosis)
- moldy grapes (wine-grower's lung)

- smoking related ILDs = a group of restrictive lung diseases
 - chronic irritation of lung interstitium via nicotinism
 - **DIP** (desquamative interstitial pneumonia)
 - RB (respiratory bronchiolitis-interstitial lung disease)
 - pulmonary Langerhans cell histiocytosis
 - **SRIF** (smoking-related intersticial fibrosis)
 - CPFE (combined pulmonary fibrosis and emphysema)

- drug induces ILDs = over 200 drugs + radiation
 - cytostatic drugs, immunosupression, heroine, hydralazine, amiodaron...
- autoimmune induced ILDs = autoimmune pneumonitis
 - collagenosis (SLE, Sjörgen's syndrome, sclerodermia, dermatomyositis / polymyositis)
- pneumoconioses = inhalation of anorganic dusts
 - silicosis (see General pathology)
 - asbestosis (see General pathology)
 - beryliosis (see General pathology)
 - coal workers pneumoconiosis (see General pathology)

- **IPF** = idiopathic pulmonary fibrosis (clinical term)
 - histopathology term is UIP (Usual Interstitial Pneumonia)
 - idiopathic primarily proliferative (fibrosing) interstitial lung inflammation (multifactorial developement = genetic factors, cytokines, PMN, smoking)
 - the most common and dangerous ILDs (frequent cause of RI among elders)

- **NSIP** = non-specific interstitial pneumonia
 - idiopathic primarily proliferative (fibrosing) interstitial lung inflammation, histopathology different from UIP (more favorable than IPF)
- **COP** = cryptogenic organizing pneumonia
 - uniform non-pecific pathological healing of lung without known cause
 - same process reacts to known causes (infection, toxic substaces, drugs, tumours...)
- **LIP** = lymphoid interstitial pneumonia
 - idiopathic chronic inflammatory (lymphocytic) interstitial lung infiltration
 - associated with HIV, autoimmune diseases (+ risk of MALT lymphoma)

Developement (pathogenesis)

- there are 2 ways of ILD manifestation possible:
- primary chronic pneumonitis
 - chronic (fibro)productive interstitial pneumonia from the very start
 - usually irevesible
 - IPF, NSIP, smoking related ILDs
- **secondary chronic** pneumonitis
 - acute pneumonitis anticipates (repeated episodes leading to chronicity)
 - acute phase is reversible (chronic phase of reparation is ireversible)
 - EAA, LIP, COP

Developement (pathogenesis)

- one way or the other, the ILDs lead to restrictive disorder and RI with pulmonary hypertension
 - developement of cor pulmonale chronicum follows as a result

Morphology

- macroscopically interstitial fibrosis (stiff thickened lung)
 - irregular = patchy fibrosis in predilective areas of the lung (EAA, smoking related ILDs, IPF, COP)
 - regular = diffuse fibrosis of the whole interstitium (NSIP, LIP, late ARDS)
- fibrosis results in "honeycomb lung"
 - variably sized blebs in a background of densely scarred lung tissue
 - terminal fibrotic change + compensatory emphysema + bronchiectasis
- diagnosis often requires biopsy (even HR-CT is not enough)

- microscopically it's possible to distinguish every single IDL
 - biopsy provides particular ILD diagnosis

Morphology

- EAA finding depends on the stage of the disease
 - acute = florid inflammation in the peribronchiolar area (neutro-, eosinophils)
 - **chronic** = lymphocytic inflammation within interstitium, granulomas, fibrosis

Morphology

- **smoking related ILDs** = a group of restrictive lung diseases
 - **DIP** = alveoli contain smokers macrophages ("desquamation"), mild fibrosis
 - RB = smokers macrophages, respiratory bronchial wall thickening
 - pulmonary Langerhans cell histiocytosis = non-tumorous accumulation of Langerhans cells, macrophages and eosinophils in the peribronchiolar and subpleural area followed with fibrosis
 - SRIF = asymptomatic hyalinization of interalveolar septa (disease?)
 - CPFE = combination of UIP + COPD

- UIP represents histopathologic counterpart of IPF
 - non-specific ("UIP-like pattern" = collagenosis, other terminal ILDs)
 - focal interstitial fibrosis of different stage (fibroblast foci), no inflammation
 - scarring mainly in subpleural and paraseptal area (patchwork pattern)

Morphology

- NSIP shows almost reverse finding compared to the UIP
 - non-specific ("NSIP-like pattern" = other terminal ILDs)
 - diffuse interstitial fibrosis of the same stage with chronic inflammation
 - NSIP pursues 2 different phases (cellular and fibrosing)

- **COP** creates presence of polypoid plugs of non-specific granulation tissue (no honeycombing)
 - active (mixed inflammation) or inactive (fibrous scarring)
 - carnifications = obturate alveoli ("fleshlike substance"; caro = flesh)
 - bronchiolitis obliterans = plugs in term. bronchioli (Masson bodies)

- LIP resembles hyper-cellular NSIP
 - diffuse interstitial infiltrates of lymphocytes (+ macrophages / granulomas)
 - follicular bronchiolitis = lymphatic follicules formed around bronchioli
 - risk of development of LIP into pulmonary MALT lymphoma (IHC, clonality)

Clinical manifestation

- adults
 - smokers as well as non-smokers (depends on ILD type)
- lung fibrosis leads to the **severe RI** with pulmonary hypertension and **cor pulmonale chronicum**
 - progressive dyspnoea with dry cough (survival approximately 4 years)
 - auscultatory phenomena (wheezing)
 - acute forms (EAA) can be manifested with fever
- accompanying symptoms of hypoxia
 - digital clubbing of fingers and nails (digiti Hippocratici)

Literature:

- ZÁMEČNÍK, Josef. Patologie 1-3. 1. vydání, LD, s.r.o. PRAGER PUBLISHING, 2019.
- BUJA, Maximilian; NETTER, Frank. Netter's Illustrated Human Pathology. 2. vydání, Elsevier Inc, 2014.
- STEJSKAL, Josef. Obecná patologie v poznámkách. 2. vydání. Nakladatelství Karolinum, 2005.
- POVÝŠIL, Ctibor; ŠTEINER, Ivo. Obecná patologie. 1. vydání.
 Nakladatelství Galén, 2011.
- BALKO, Jan; TONAR, Zbyněk; VARGA, Ivan. Memorix histologie.
 1. vydání. Nakladatelství Triton, 2016.
- https://ucebnice-patologie.cz/