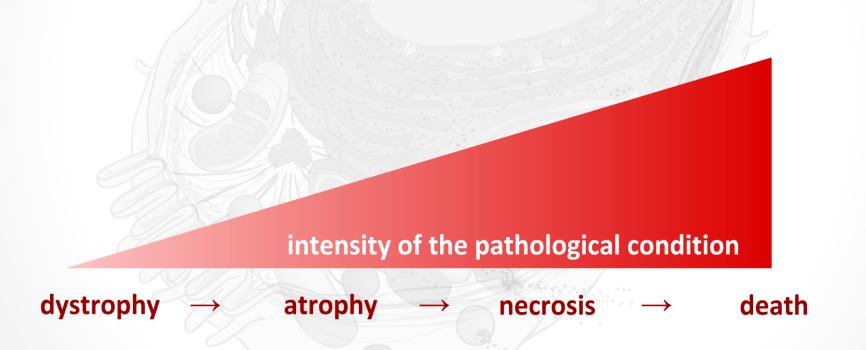


# **Cell injury**



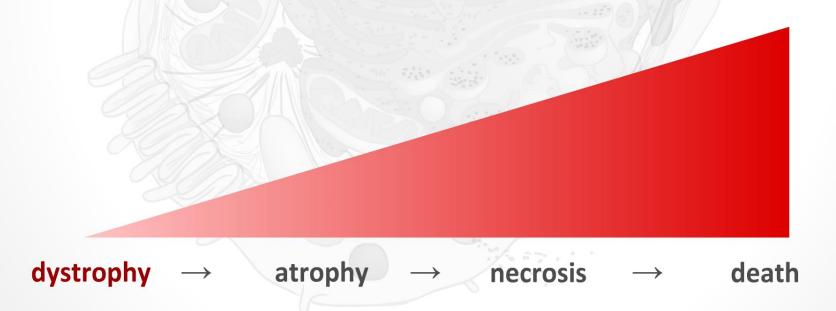


### MUDr. Jan Balko, Ph.D.


Department of Pathology and Molecular Medicine,

2<sup>nd</sup> Faculty of Medicine, Charles University in Prague and

Motol University Hospital

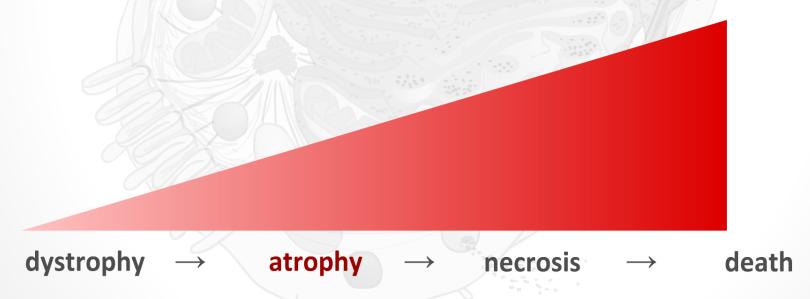

# **Cell injury**

- different behavior of the cell damaged by pathologic influence
- there are several responses according to the severity of the cause



# **Dystrophy**

- dystrophia, "degeneration"
- the mildest level of cell injury
- hereditary / acquired metabolism disorder
- results in **improper nutrition** of the affected cell (*dys-+-trophia*), followed by a**ccumulation** of metabolites (intra- or extracellular)




# **Dystrophy**

- metabolic disorders are classified according to biochemistry

- 1) metabolism of proteins
- 2) metabolism of sugars (saccharides)
  - 3) metabolism of lipides
  - 4) metabolism of water
  - 5) metabolism of minerals
- topics of the Metabolic disorders lectures

- atrophia
- medium level of cell injury (between dystrophy and necrosis)
  - closer to dystrophy
- reabsorption and breakdown of cells (size of organs is reduced)
  - mainly parenchymatous organs



### **Causes of atrophy**

- same as for necrosis but with a lower intensity

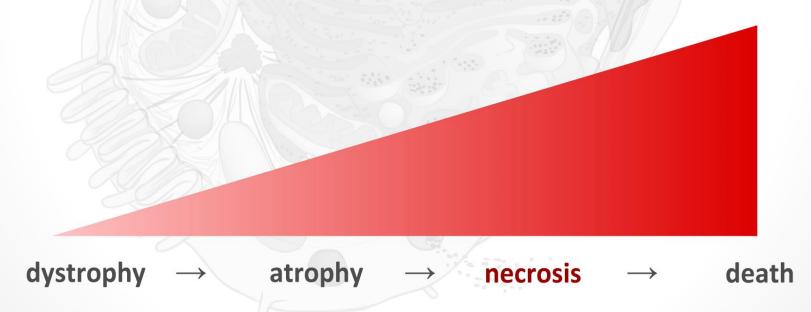
#### 1) senile

- "physiologic" decrease of muscle and bone volume during aging
- 2) involutional
  - involution of thymus, uterus and breast after pregnancy, embryonal
- 3) alimentary
  - malnutrition, tumour cachexy because of inappetence
- 4) pressure
  - benign tumours, aneurysm, hydronephrosis
- 5) neurogenic
  - peripheral palsy
- 6) inactivity
  - muscle atrophy

- the whole organism can undergo atrophy and result in marasmus
  - metabolism disruption consequenting in a loss of neural and hormonal coordination of the body
  - fat tissue → lymphoid tissue → muscles → CNS (preserved)

- microscopic finding is discreet
  - higher basophilia, loss of fat and glycogen; lipofuscin, pyknosis

### Types of atrophy


#### 1) Simple

- decrease in the **volume** of cells (opposite to hypertrophy)
  - liver, muscles, myocardium...
  - e.g. atrophia fusca (brown atrophy of lungs, liver, heart)

#### 2) Numeral

- decrease in the **number** of cells (opposite to hyperplasia)
  - atrophia lipomatosa (pancreas, heart, muscle = pseudohypertrophia)
  - atrophia fibrosa (bone marrow failure)
- hypotrophy = congenital general atrophy (hypotrophic newborn)
- hypoplasia = congenital bellow-average numer of cells within organ

- necrosis
- the most severe ireversible cell injury
- type of cell death (partial death of the organism intra vitam)
- destruction affects singe cells, tissues or the whole organ
  - can be selective (prox. renal tubules after mercury poisoning)



#### **Causes of necrosis**

- whole spectrum of causes (high intensity of affection is necessary)
- denaturation of proteins (loss of tertial structure) and proteolysis

- 1) anoxia
  - loss of oxygen supply (follows hypoxy)
- 2) ischemia
  - loss of blood supply (follows oligemia) → infarct (infarction)
- 3) physical
  - trauma, thermal damage, electrical, RTG and gamma radiation
- 4) chemical
  - hyperkalemia, parathormon, pancreatic enzymes, poisoning
- 5) biological
  - bacterias, viruses, mycotic infection, parasites

### Microscopic findings

- cytoplasm looses basophilia and becomes deeply eosinophilic
- nucleus degenerates (*pyknosis*, parietal hyperchromasia) and undergoes decay (*karyorhexis*, *karyolysis*)
- tissue is replaced with eosinophilic amorphous material
- demarcation from the surrounding tissue and inflammaion
- in time the necrosis sequestrates (separation), or undergoes resorption, followed by reparation
- + sometimes other changes can occur (e.g. calcification)

### **Types of necrosis**

- types of necrosis designated according to it's macroscopy
- response of the surrounding tissue determines the image
  - it depends which organ is affected + what is the cause of necrosis

### 1) Simple necrosis

- only 1 tissue type is affected
- macroscopy is discreet, usually consistency and colour is changed (e.g. fragile brownish muscles)
- muscle ischemy, mild burn of epidermis, mercury poisoning

#### 2) Coagulative necrosis

- affects **protein-rich** organs
- macroscopy = gelatinous dry yellowish edematous deposits
   (its shape depends on blood supply = spheric / lamellar in heart)
- reparation results in a formation of scar (grey, from periphery)

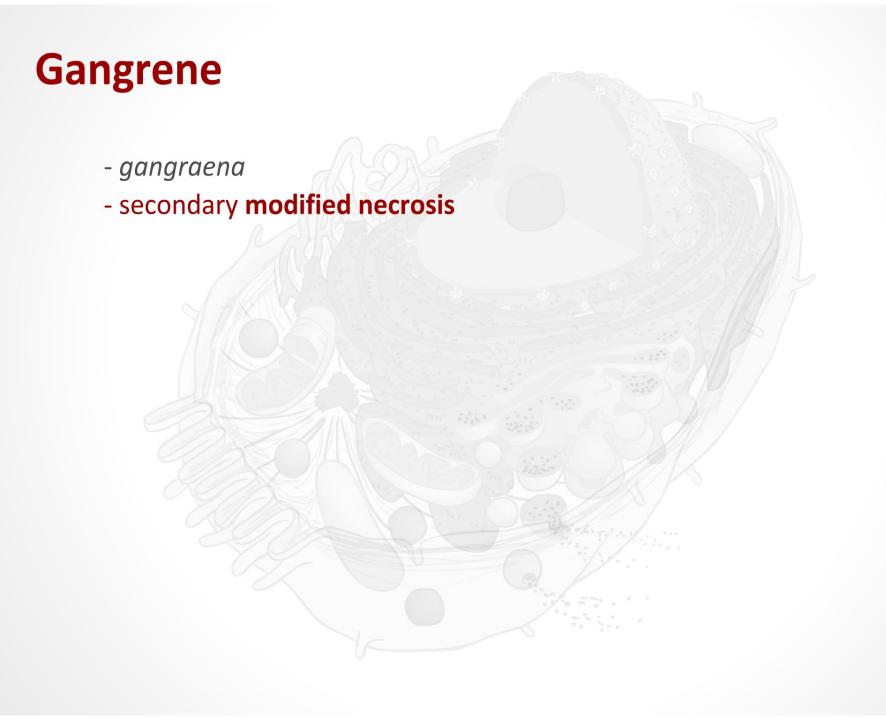
#### Zenker's necrosis

- glassy or waxy appearence of the muscles (flu, typhus, tetanus)

#### **Caseous necrosis**

- special subtype caused by 4<sup>th</sup> type of hypersensitivity (TBC)
- macroscopy = clumped cheese-like deposites (white, friable)
- microscopy = basophilic debris, granulomatous inflammation

#### 3) Colliquative (liquefactive) necrosis


- affects water-rich organs (brain, pancreas, or abscess anywhere)
- macroscopy = necrotic tissue forms viscous liquid mass
- CAVE liquefactification in brain is secondary due to liquor
- reparation results in formation of pseudocyst

#### 4) Hemorrhagic necrosis

- secondary bleeding into necrotis mass due to reflux of the blood
  - collaterals (lungs)
- infarsation (blockage of venous drainage, e.g. intestines)
- reperfusion (revascularisation of MI)
- macroscopy = necrotic tissue is soaked with bloood
  - lung embolism, infarsation of intestine, HSV encephalitis,
     Waterhouse-Fridrichsen syndrome...
- reparation results in a formation of scar tissue

#### 5) Fibrinoid necrosis

- caused by immune complex-mediated vascular damage
  - SLE, scleriodermia, vasculitis, RA, malignant nephrosclerosis...
- macroscopy = invisible (just complication can be noticeable)
- aneurysms, endocardial or joint nodules...
- microscopy true fibrin deposits within the vessel wall
- "fibrinoid" (= fibrin) is eosinophilic amorphous material (H&E), stained red in trichrome staining



### Gangrene

#### 1) Dry gangrene

- mummification
- necrosis is modified by **drying out** (ischemy is usually causative)
  - limited oxygen limits putrefication (bacteria fail to survive)
- macroscopy = dry dark reddish-black shrunked part of the body
  - sharp demarcation with a possibility of auto-amputation
  - Hb oxygenation leads to the development od hematin (black)
- e.g. peripheral artery disease of the limb, umbilical cord

### Gangrene

#### 2) Wet gangrene

- gangraena humida, sphacelus
- necrosis modified by bacteria
- macrocopy = swollen putrified green-greyish mass emiting bad smell
  - thriving bacteria produce hydrogen sulfide
- noma (Fusospirilosis), Vincent-Plaut's angina, stercoral peritonitis, Fournier's gangrene, acute appendicitis, sacral decubitus, lung gangrene, "diabetic foot"...

### Gangrene

#### 3) Gas gangrene

- gangraena emphysematosa
- necrosis modified by gas-producing bacteria (Cl. perfringens)
- macroscopy = rapid spreading, massive edema, gas bubbles within the tissue (methane)

- programmed cell death ("induced suicide of the cell")
  - 2<sup>nd</sup> type of the cell death next to the necrosis
  - there is no reaction of the surrounding tissue
- necessary part of tissue homeostasis (opposite to cell division)
  - embryonal development = separationn of fingers and toes etc.
  - disposal of dangerous cells = tumour cells, virus infected cells...
  - disposal of old cells = proliferating tissues (epithelium, hepatocytes, lymphocytes)

### **Process of apoptosis**

- highly regulated and controlled process
- divided into several phases
- key role of the tumour suppresor gene *p53* 
  - "the gurdian of the genome"
  - non-mutaded form allows natural destruction of cells with irreversibly damaged DNA

### **Process of apoptosis**

- 1) Initial phase
  - ligand transfered to the "death receptors" + activation of caspases
- 2) Executive phase
  - caspases evocate cell death
  - cell shrinkage and chromatin condensation (pyknosis, or parietal chromasia) → karyorhexis (selective DNA fragmentation) → eosinophilia of the cytoplasm (membranes stay intact) → blebbing with formation of apoptotic bodies → phagocytosis

|                                    | Necrosis                      | Apoptosis                          |
|------------------------------------|-------------------------------|------------------------------------|
| Extension                          | large (area of the tiussue)   | sparse cells                       |
| Cell volume                        | increases                     | decreases (shrinkage)              |
| Membrane                           | rupture                       | intact                             |
| Nucleus                            | decay of the envolope and DNA | DNA condensation and fragmentation |
| Mitochondria                       | bulging                       | intact                             |
| Cell integrity                     | decay                         | apoptotic bodies                   |
| Reaction of the surrounding tissue | inflammation                  | phagocytosis                       |

- tissue growth / enlargement (opposite to regression / degeneration)
- includes tissue **healing** and other processes

#### 1) Hypertrophy

- hypertrophia
- organ enlargement due to the increase of the volume of cells
- increased synthesis of cell components (without cell division)
- mainly "postmitotic cells" (cardiomyocytes, skeletal muscle fibres)

- 1) Hypertrophy
  - 1) physiologic
    - functional (heart, muscles), hormonal (pregnancy)
  - 2) pathologic
    - ineffective work of the cells with high metabolic demand
    - Cor hypertonicum and pulmonale, valvular heart disease, morbus Hirschprung, trabeculasion of smooth muscle of the urinary bladder

#### 2) Hyperplasia

- organ enlargement due to the proliferation of cells
- increase of the number of the cells (cell division)
- "labile" (epitehelium, mucosal cells) or "stabile" cells (parenchyma)
- may be in combination with hypertrophy

#### 2) Hyperplasia

#### 1) physiologic

 lymp nodes activation, hormonal (breast in puberty, uterus during pregnancy), liver egeneration, agenesis of the lung, kidney resection

#### 2) pathologic

- hyperplasia of the prostate or endometrium

#### 3) Metaplasia

- conversion in cell type
- reversible replacement of differenciated tissue with another one
- usually occures in connection with cronic inflammation, mechanical irritation oravitaminosis A...
- ranges from bare modulation to "reprogrammed" tissue
- epithelial (leukoplakia, squamous or intestinal metaplasia), mesenchymal (ossification, extramedullar hematopoiesis)
- risk of developing malignancy

#### 4) Dysplasia

- change in cell phenotype (precancerous condition)
- genetic aberrations in dysplastic cells
- several levels of dysplasia to the point of carcinoma in situ (non-invasive ca)
- caused by radiation, viruses (HPV)...

#### **CAVE**

- organ dysplasia stands for pathologic development of the organ
- e.g. Tuberous sclerosis (aglomerates of ganglion cells in brain cortex without hexalaminar structure)

### Literature

- POVÝŠIL, C.; ŠTEINER, I. Obecná patologie, 1. vydání.
   Nakladatelství galén, 2001
- STEJSKAL, J. Obecná patologie v poznámkách, 2. vydání. 2001
- BEDNÁŘ, B.; MIŘEJOVSKÝ, P., Obecná patololgie. 1994
- www.wikipedia.com