Pathology of the lungs 3

MUDr. Jan Balko, Ph.D.

Department of Pathology and Molecular Medicine,
2nd Faculty of Medicine, Charles University in Prague and
Motol University Hospital

Diseases of the lungs

- 1) maformations
- 2) inflammations
- 3) tumours
- 4) obstructive lung diseases
- 5) restrictive lung diseases
- 6) vascular lung diseases

Lung malformations

Lung malformations

prenatal anatomical abnormality of the lungs,
 exceeding the level of variability

bronchial stenosis / atresia
bronchogenic cyst
pulmonary hypoplasia
CPAM / CCAM
pulmonary sequestration

Bronchial stenosis / atresia

Definition

- stenosis to atresia of the bronchial lumen

Causes (etiology)

- congenital defect of luminisation (partial / complete)

Developement (pathogenesis)

- variable respiratory restriction based on the locality (peripheral can be asymptomatic; central significant)

Bronchial stenosis / atresia

- Morphology
 - stenotic / atretic bronchus
 - distally forming cysts from mucus accumulation
- Clinical manifestation
 - asymptomatic or dyspnoea

Bronchogenic cyst

Definition

- cyst covered with bronchial mucosa

Causes (etiology)

- (extra)pulmonal detachment of embryonal pulmonary cells

- cysts are formed in the locus of detachment (analogy to the bronchial wall)
- mediastinal / pulmonary (detached from bronchial tree)

Bronchogenic cyst

Morphology

- cyst filled with mucus (several cm in diameter)
- microscopically bronchial wall (smooth muscle, cartilage...)

Clinical manifestation

- asymptomatic or compression of the thoracic organs

Pulmonary hypoplasia

Definition

- congenitally small lungs (most common pulm. malformation)

Causes (etiology)

- compression (oligohydramnios, diaphragmatic hernia)
- trizomy (12; 18; 21)
- chest deformity (bone dysplasia)

Developement (pathogenesis)

- low respiratory surface leading to the RI

Pulmonary hypoplasia

Morphology

- small lungs (weight comparsion)
- lower lobes do not overhang heart

Clinical manifestation

 asymptomatic or hydrops and fetal death

CPAM / CCAM

Definition

- CPAM = congenital pulmonary airway malformation
- CCAM = congenital cystic adenomatoid malformation

Causes (etiology)

- congenital disorder of the bronchioalveolar units formation

Developement (pathogenesis)

 mucus accumulation within bronchioalveolar units disconnected from bronchial tree and their cystic dilatation

CPAM / CCAM

Morphology

- focal / diffuse cystic dilatation of the lung parenchyma
- microscopically 6 types of the cysts (size, epithelium...)

Clinical manifestation

- children (rarely adults)
- recurrent infection and dyspnoea
- rarely mucinous metaplasia and even adenocarcinoma of the lung in childhood

Pulmonary sequestration

Definition

- a piece of pulmonary parenchyma not attached to the lung

Causes (etiology)

- isolation of embryonal pulmonary cells with independent developement

- not communicating with bronchial tree
 - bronchiectasis / mucostasis are developed in time, unable to cough up the mucus
- blood supply from the aberrant artery from aorta
 - volume overload of the small circulation (pulmonary hypertension)

Pulmonary sequestration

Morphology

- intra- / extrapulmonal p. parenchyma separated from the lung
- cystic dilatation in time

Clinical manifestation

- recurrent infection +/- pulmonary hypertension

Vascular lung diseases

Vascular lung diseases

- a group of diseases characterised with disorder of **pulmonary circulation** (small blood circulation)
- the majority can be acute or chronic (except DAH)

pulmonary edema
pulmonary embolism (+ lung infarction)
pulmonary hypertension
DAH
pulmonary vasculitis

- oedema pulmonum
- fluid accumulation in the tissue and air spaces of the lungs
 - fluid composition resembles extracellular fluid
- very common disease with serious and fatal course

Causes (etiology)

- hemodynamic = due to the disruption of Starling's forces
 - **†** hydrostatic pressure = left heart failure (the most common one)
 - **\(\psi\)** oncotic pressure = burns, nephrotic syndrome, uremia
 - neurogenic = disruption of the autonomic pathways within the spinal cord and capillary dilatation (CNS defects)
- cytotoxic = caused by damage of capillary wall
 - endogenous = shock, inflammation (even autoimmune)
 - exogenous = inhalation (toxic substances, hot air), lung trauma
- the combination of causes is most commonly observed

- presence of fluid leads to **impaired gas exchange** and changes in **pressure rates**
 - hypertrophy of tunica media in vessels
 - interstitium undergoes fibrosis, which intensfies pulmonary hypertension
 - hypertension translates to the right heart (cor translatum)
- complications can develope
 - **brown induration** = fibrosis and siderophage deposition within the lungs due to the long standing pulmonary congestion
 - hypostatic bronchopneumonia = infection of edematous fluid
 - carnifications = organisation of fibrin in edematous fluid

Morphology

- macroscopically heavy lung soaked with fluid
 - LL over 480 g and RL over 570 g (sometimes even more than 1 kg)
 - lungs are filled with foamy fluid
- microscopically alveoli contain granular eosinophilic fluid
 - acute = plasma escapes in alveolar spaces + congested capillaries
 - chronic = rupture of capillaries leads to release of hemosiderin from damaged erythrocytes (engulfed by siderophages) + induration
 - cytotoxic edema can contain inflammatory cells and capillary microthrombi

Clinical manifestation

- signs of cardiac asthma (asthma cardiale)
 - dyspnoea specially in lying possition ("drowning" in edematous fluid)
 - **productive cough** (pinkish sputum = *sputum croceum*)
 - develops continually into right heart failure

Definition

- morbus (thrombo)embolicus pulmonum
- blockage of pulmonary artery by a substance that has moved from veins / right heart through the bloodstream
- common disease (50 % tend to be unrecognized)

Causes (etiology)

- various materials can embolize:
 - thrombi (= thromboembolism, blood clot intra vitam, mainly veins of LE)
 - infected trombi (peripheral pyemia as a complication of TF)
 - air (trauma, operation with aspiration over 10 ml of air)
 - azote (caisson disease / decompression sickness)
 - fat (trauma of long bones, polytrauma of subcutis, burns)
 - bone marrow (trauma of axial bones)
 - amniotic fluid (complicated delivery, anaphylaxis to fetal Ags)
 - heterogenous material (catheter, talc in cases of drug-addicts)
 - tumour cells (angioinvasion)

- determined according to the size of embolus:
- massive = a. pulmonalis and its branches
 - increases blood pressure in the right heart with obvious dilatation of RA +
 RV and developement of cor pulmonale acutum)
 - usually sudden death

- determined according to the size of embolus:
- **submassive** = smaller branches of a. pulmonalis
 - lower increase of right heart pressure with dilatation of RA + RV and developement of cor pulmonale acutum)
 - right heart failure is also possible, but slower
- can lead to the pulmonary infaction
 - only under condition of heart failure (insufficiency of nutritive and functional pulmonary circulation)
 - sphenic hemorrhagic necrosis and fibrinous pleuritis (followed by scarring)
 - complication secondary anaerobic infection (pulmonary gangrene)

- determined according to the size of embolus:
- successive = capillaries (chronic, repeatedly)
 - gradual pulmonary hypertension without dilatation of RA + RV, but with hypertrophy = cor pulmonale chronicum)
 - heat failure (slow) and pulmonary infarction (numerous) are also possible

Morphology

- macroscopically obturation of p. arteries with trombus
 - compared to cruor, the thrombus is solid, fragile and brashy + connected to the vessel wall
 - pulmonary infarction looks sphenic and red
 - chronic one shows hallmarks of healing
- microscopically obturation of p. arteries with trombus
 - organisation or even recanalization of larger thrombi (vital reaction)
 - pulmonary infarction represents hemorrhagic necrosis
 - the proof of fat embolism requires frozen cut

Clinical manifestation

- determined according to the size of embolus:
 - massive = sudden death
 - submassive = sudden dyspnoea and acute right heart failure
 - successive = asymptomatic or episodes of dyspnoea and chronic right heart failure

Definition

- morbus hypertonicus pulmonum
- increased blood pressure within the pulmonary artery
 over 30 mmHg
- primary (rare, but fatal), secondary (common)

Causes (etiology)

- **primary** = idiopathic (IPAH)
 - Idiopathic Pulmonal Arterial Hypertension
 - cause is unknown
- secondary = pressure / volume overburdens pulmonary circulation
 - cause can be revealed

- **precapillary** = disorder enters via aa. pulmonales
 - IPAH, cardiac left-to-right shunts (higher V of blood in RV), pulmonary embolism, IDLs
- postcapillary = disorder enters via vv. pulmonales
 - cor translatum, pulmonary veno-occlusive disease
- allways leads to the overloading of RV and cor pulmonale chronicum

Morphology

- macrscopically resembles fibrous atherosclerotic plaques
 - visible in large pulmonary arteries
- micrscopically remodeling of small pulmonary vessels
 - hypetrophy of tunica media of arterioles → proliferation of tunica intima of arterioles (stenosis) → lumen obturation → plexiform arteriopathy → dilatation or bleeding → fibrinoid necrosis

- **Clinical manifestation**
 - **primary** = young adult 우
 - incurable with gradual progression towards right heart failure
 - **secondary** = older adults
 - curable with gradual progression towards right heart failure

- diffuse alveolar hemorrhage
- acute massive bleeding into lung interstitium and alveoli
 - must be bilateral and developed at the same time (otherwise there is a different source of bleeding)
 - part of acute lung injury (ALI) next to the ARDS
- rare, but fatal

Causes (etiology)

- immune causes = usually autoimmune mechanism
 - Goodpasture syndrome, collagenosis, vasculitis
- unknown cuases = idiopathic
 - so called idiopathic alveolar hemorrhage / isolated pulmonary pauciimmune capillaritis

- acute **bleeding** (erythrocytes) engulfed by macrophages (siderophages)
 - interstitial **fibrosis** follows
 - parenchymal necrosis and secondary infection is possible

Morphology

- macroscopically diffuse bilateral bleeding within lungs
- microscopically bleeding + acute capillaritis
 - acute capillaritis / alveolitis (leukocytoclastic vasculitis) = adhesion of PMN onto activated endothelium and their pericapillar distribution

- allways severe condition
 - dyspnoea with **hemoptysis** and life-threatening RI

Definition

- absence of the air within lung parenchyma
- atelectasis = focally collapsed lung
 (used to stand for collapsed lung of the newborns)
- collapsed lung = min. 1 lobe of the whole lung is collapsed (used to stand for collapsed lung which has already been providing gas exchange)

- Causes (etiology)
 - atelectasis:
 - 1) obstruction
 - closure of the ascendent brochus for a part of the lung
 - intraluminal (aspiration, tumor, mucus plug, blood clot)
 - extraluminal (tumor, lymph node, inflammation)
 - 2) compression
 - pressing a part the lung from the outside
 - pathological pleural content (hydro- / hemo- / pyothorax)
 - 3) low surface tension (surfactant deficiency)
 - allveoal collapse after 1st inbreath of immature newborns

- Causes (etiology)
 - collapsed lung:
 - 1) compression
 - pressing a large part lung from the outside
 - pneumothorax (trauma, rupture of the bulla, iatrogenic = punction, biopsy)

- air resorption and alveolar collapse
 - air gets absorbed into blood

Morohology

- macroscopically firm collapsed parenchyma without air
 - often lower lobes / surroundings of the rapidly growing lesions (pneumonia, tumor bleeding)
 - in time, collapse induration of the lung is developed ("splenisation")
 - high position of the diaphragm, wrinkled pleura, medistinal shift
 - water test in newborns (except from *pulmo spumosus*)
- microscopically collapsed alveoli
 - slit-like spaces with activated pneumocytes followed by fusion of their walls (induration)

Clinical manifestation

- depends on extension (atelectasis can be asymptomatic; collapsed lung leads to RI)
 - usually dyspnoea, cyanosis, tachypnoe
 - collapse can be converted into partial one (dilatation due to the adhesions)
 by talc aplication into pleural cavity

- acute

inflation of the parenchyma after elimination of the cause (reversibile)

- chronic

• fibrotisation (induration) of the lung parenchyma (ireversibile)

Thank you for attention.

Literature:

- ZÁMEČNÍK, Josef. Patologie 1-3. 1. vydání, LD, s.r.o. PRAGER PUBLISHING, 2019.
- BUJA, Maximilian; NETTER, Frank. Netter's Illustrated Human Pathology.
 - 2. vydání, Elsevier Inc, 2014.
- STEJSKAL, Josef. Obecná patologie v poznámkách. 2. vydání. Nakladatelství Karolinum, 2005.
- POVÝŠIL, Ctibor; ŠTEINER, Ivo. Obecná patologie. 1. vydání.
 Nakladatelství Galén, 2011.
- BUJA, Maximilian; NETTER, Frank. Netter's Illustrated Human Pathology. 2. vydání, Elsevier Inc, 2014.
- https://ucebnice-patologie.cz/